Η ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ - ΚΟΣΜΟΛΟΓΙΑ ΚΑΙ ΑΣΤΡΟΝΟΜΙΑ
Κοσμολογία και Αστρονομία 1
Αριστοτέλης – Πτολεμαίος – Κοπέρνικος – Κέπλερ.
Tycho Brahe
Κοσμολογία και Αστρονομία 2
Γαλιλαίος
Κοσμολογία και Αστρονομία 3
Νεύτων
Κοσμολογία και Αστρονομία 1
Η Jacobs για την εποχή του Vesalius.
Ο Descartes για τον Harvey
Ενώ ο Harvey βλέπει την καρδιά σαν αντλία, ο Descartes την παρουσιάζει σαν "φούρνο" ή "καμίνι" (και έτσι είναι πολύ κοντά στην άποψη του Γαληνού, ο οποίος παρομοίαζε την καρδιά με ένα φιτίλι, το αίμα με το λάδι που το εμποτίζει και τους πνεύμονες με ένα φυσερό και είχε σκεφτεί ότι το αίμα μετά την καύση του άφηνε ένα καπνώδες κατάλοιπο).
Ο Descartes και το ποσοτικό επιχείρημα του Harvey
"Η κριτική του Χάρβεϋ σε βάρος της θεωρίας του Γαληνού ασκείται ενάντια σε μια σειρά κεντρικών και βασικών σημείων: Η ποσότητα αίματος που αποβάλλεται από την καρδιά σε μια ώρα υπερβαίνει το βάρος ενός ανθρώπου: πώς είναι δυνατόν αυτή η τεράστια ποσότητα αίματος να έχει παραχθεί από την θρέψη; Πώς γεννιέται και πού καταλήγει όλο αυτό το αίμα αν δεν αποδεχτούμε την υπόθεση μιας συνεχούς κυκλοφορίας;" (απόσπασμα από το βιβλίο του Paolo Rossi: Η γένεση της σύγχρονης επιστήμης στην Ευρώπη, εκδ. Ελληνικά Γράμματα, 2004, σ. 369)
Descartes, Ιατρική, Εμπειρία και Μαθηματικά
ΟΠΤΙΚΗ ΚΑΙ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ
1. Εμπεδοκλής και Ευκλείδης
2. Al Hazen
3. Roger Bacon
4. Καρτέσιος
Γενικά, ως «μαθηματικοποίηση της φύσης» μπορεί να θεωρηθεί η αντικατάσταση των εργαλειακών θεωρήσεων της μαθηματικής προσέγγισης στην μελέτη της φύσης με μια πιο πραγματοκρατική (ρεαλιστική) θεώρηση. Η εργαλειακή θεώρηση είναι μια περίπτωση του μεθοδολογικού κανόνα του «σώζειν τα φαινόμενα», σύμφωνα με τον οποίο οι μαθηματικές-επιστημονικές θεωρίες (π.χ. το Πτολεμαϊκό σύστημα) αποτελούν υπολογιστικά εργαλεία πρόβλεψης (π.χ. της θέσης των πλανητών) και δεν έχουν οντολογική αξία. Σύμφωνα με την πραγματοκρατική προσέγγιση, αντίθετα, η μαθηματική θεώρηση της φύσης αποκαλύπτει το πώς είναι πραγματικά ο κόσμος. Παίρνει θέση, δηλαδή, για την οντολογική υπόσταση των πραγμάτων, αναλαμβάνοντας να πει πώς αυτά όντως έχουν. Υπό αυτή την οπτική, αν οι μαθηματικοί υπολογισμοί δίνουν ορθά αποτελέσματα, αυτό συμβαίνει διότι η προτεινόμενη θεωρία είναι αληθής ή, τουλάχιστον, πολύ κοντά στην αλήθεια: δηλαδή, περιγράφει πώς όντως έχει η φυσική πραγματικότητα.
Μια από τις οργανωτικές αρχές της αριστοτελικής άποψης για την επιστήμη ήταν ότι κάθε επιστήμη έπρεπε να είναι ομογενής, δηλαδή, οι πρώτες αρχές της έπρεπε να αναφέρονται στο ίδιο γένος όπως και τα αντικείμενά της. Τόσο η φυσική φιλοσοφία όσο και τα καθαρά μαθηματικά ικανοποιούσαν αυτό το αίτημα. Τι γίνεται όμως στην περίπτωση όσων βρίσκονται ανάμεσα στη φυσική φιλοσοφία και τα καθαρά μαθηματικά, των λεγόμενων «μέσων» ή «μεικτών» επιστημών (scientiae mediae), όπως, για παράδειγμα, η αστρονομία, η οπτική, η μηχανική, η αρμονική, η χαρτογραφία, η ιατρική; Η «μεικτή» επιστήμη έχει να επιτελέσει δύο έργα: το πρώτο είναι να δείξει ότι ένα σύνολο φυσικών αντικειμένων έχει μια συγκεκριμένη ιδιότητα, η οποία μπορεί να περιγραφεί μαθηματικά, και το δεύτερο έργο είναι να δείξει ότι έχει αυτή την ιδιότητα βάσει κάποιων μαθηματικών αρχών. Έτσι, το «φυσικό μέρος» μιας «μεικτής» επιστήμης μπορεί να δώσει την γνώση ενός γεγονότος (γνώση του ότι), ενώ το «μαθηματικό μέρος» είναι δυνατόν να δώσει την γνώση της αιτίας του (γνώση του διότι).
Με βάση τις αριστοτελικές-σχολαστικές απόψεις, οι μαθηματικές θεωρίες δεν ήταν παρά υποθέσεις (εργαλεία, όργανα) που προτείνονταν για να διευκολύνουν διάφορους υπολογισμούς και προβλέψεις («σώζειν τα φαινόμενα»). Έτσι, η μαθηματική προσέγγιση των ουράνιων φαινομένων, όπως αυτή εκφραζόταν από το σύστημα του Πτολεμαίου, θεωρήθηκε ότι ήταν απλώς ένα εργαλείο υπολογισμών για την θέση των πλανητών, ενώ η αληθινή εικόνα του κόσμου δινόταν από την αριστοτελική γεωκεντρική κοσμολογία των ομόκεντρων ουράνιων σφαιρών.
Η απαρχή της «μαθηματικοποίησης της φύσης» σηματοδοτείται, κατά κάποιο τρόπο, από την ηλιοκεντρική θεωρία του Κοπέρνικου. Το 1543 ο Κοπέρνικος δημοσίευσε το βιβλίο του De Revolutionibus Orbium Coelestium (Περί των Περιφορών των Ουρανίων Σφαιρών) στο οποίο εξέθετε την ηλιοκεντρική θεωρία του και, επιπλέον, ισχυριζόταν ότι το σύστημά του είναι αληθές, διότι τα μαθηματικά του το απαιτούν. Ο επιμελητής της έκδοσης, ο Λουθηρανός πάστορας Andreas Osiander (1498 – 1552), είχε προσθέσει ένα πρόλογο (χωρίς την έγκριση του ετοιμοθάνατου Κοπέρνικου), όπου υποστήριζε ότι η θεωρία του ηλιοκεντρισμού ήταν απλώς ένα εργαλείο για την υποβοήθηση των υπολογισμών και ότι οι προτεινόμενες υποθέσεις δεν είχαν καμία αξίωση αληθείας. Πενήντα χρόνια μετά την έκδοσή του, το βιβλίο αυτό περιελήφθη στο index (κατάλογο των απαγορευμένων βιβλίων) του Βατικανού. 
Προς την κατεύθυνση της «μαθηματικοποίησης» ήταν επίσης και οι εργασίες του Τύχωνος Μπράχε (Tycho Brahe, 1546 – 1601), ο οποίος επεξεργάστηκε ένα σύστημα που προσπαθούσε να συμβιβάσει τις θέσεις του γεωκεντρισμού και του ηλιοκεντρισμού. Ο Μπράχε δεν ανήκε στην πανεπιστημιακή ιεραρχία, οπότε ήταν σχετικά ευέλικτος όσον αφορά στην αυστηρή ιεράρχηση των επιστημών και είχε τίτλο ευγενείας, πράγμα που σήμαινε ότι δεν είχε ανάγκη κάποιον ισχυρό πάτρωνα για να ενισχύσει την αξιοπιστία του και μπορούσε να εκφράζει τις απόψεις του ως σχετικά ισότιμος με τους φυσικούς φιλοσόφους. Σύμφωνα με τον Μπράχε, η Γη παραμένει στο κέντρο του σύμπαντος και γύρω της περιστρέφεται ο Ήλιος, ενώ οι υπόλοιποι πλανήτες περιφέρονται γύρω από αυτόν. Η σημαντικότερη συνεισφορά του Μπράχε ήταν η δημοσίευση των παρατηρήσεων του για ένα νέο άστρο (σήμερα γνωρίζουμε ότι επρόκειτο για ένα καινοφανή αστέρα) που ανακάλυψε το 1573 καθώς και οι παρατηρήσεις του για τις τροχιές των κομητών. Οι εργασίες αυτές προκάλεσαν έντονες αντιδράσεις από την μεριά των αριστοτελικών μια και σήμαιναν ότι στον τέλειο, άφθαρτο και αναλλοίωτο ουράνιο κόσμο υπάρχει αλλαγή και φθορά. Επιπλέον, οι παρατηρήσεις του Μπράχε έθεταν προβλήματα σχετικά με τις ουράνιες σφαίρες και την υλική τους σύσταση, αφού έθεταν σε αμφιβολία την ύπαρξη του αιθέρα.
Ο μαθητής και προστατευόμενος του Μπράχε, ο Κέπλερ (Johannes Kepler, 1571 – 1630) δημοσίευσε το 1609 το έργο του Astronomia Nova Aitiologetos, Seu Physica Coelestis (Νέα Αστρονομία, Βασισμένη πάνω σε Αιτίες, ή Ουράνια Φυσική). Όπως ήδη αποκαλύπτει ο τίτλος του έργου, ο Κέπλερ προτείνει μια νέα αστρονομία, η οποία δεν είναι απλώς αφηρημένα μαθηματικά με σκοπό την υποβοήθηση των υπολογισμών, αλλά παρουσιάζει μια φυσική περιγραφή του κόσμου και εξηγεί με βάση τα φυσικά αίτια το πώς λειτουργεί πραγματικά το πλανητικό σύστημα. Σε αυτό το έργο ο Κέπλερ διατυπώνει τους δύο νόμους της κίνησης των πλανητών. Σύμφωνα με τον πρώτο νόμο, οι πλανήτες κινούνται σε ελλειπτικές τροχιές γύρω από τον ήλιο (που βρίσκεται σε μια από τις εστίες της έλλειψης), και σύμφωνα με τον δεύτερο νόμο, ο οποίος εξηγούσε την φαινόμενη ανάδρομη κίνηση των πλανητών, οι πλανήτες κινούνται με μεταβαλλόμενη ταχύτητα στην τροχιά τους και με τρόπο ώστε η ευθεία που ενώνει τα κέντρα του ήλιου και του πλανήτη να σαρώνει ίση επιφάνεια σε ίσο χρόνο. Η φυσική θεωρία που πρότεινε ο Κέπλερ ως αιτιολόγηση της κίνησης των πλανητών βασιζόταν στην μαγνητική φιλοσοφία του Ουίλιαμ Γκίλμπερτ (William Gilbert, 1540 – 1603) και στην νεοπλατωνική θεωρία για την μεταφυσική του φωτός. Η φυσική του θεωρία ήταν αυτή που τον οδήγησε στην επιλογή των ελλείψεων ως των πραγματικών τροχιών των πλανητών μέσα από έναν αριθμό τροχιών διαφόρων ωοειδών σχημάτων.
Ο όρος «μεταφυσική του φωτός» αναφέρεται στην ιδέα ότι το φυσικό σύμπαν είναι φτιαγμένο από φως, έτσι ώστε όλα του τα χαρακτηριστικά, περιλαμβανομένων του χώρου, του χρόνου, των ζώντων οργανισμών και όλων των πραγμάτων που περιέχει, ακόμα και των ουρανίων σφαιρών και των άστρων, είναι διαφορετικές μορφές της μοναδικής θεμελιώδους ενέργειας του φωτός. Κατά τον Γκροσσετέστ, το σύμπαν γεννήθηκε από ένα κεντρικό σημείο φωτός, που δημιούργησε ο Θεός και από το οποίο, με την διάχυση/μετάδοση του φωτός, δημιουργήθηκε όλος ο φυσικός κόσμος. Έτσι, η μαθηματική (γεωμετρική) μελέτη του φωτός μπορεί να μας δώσει το κλειδί για την εξήγηση των φυσικών φαινόμένων εν γένει.
Ο Γαλιλαίος (1564 – 1642), μετά από αμφιβολίες και αναζητήσεις, αποδέχθηκε την κοπερνίκεια θεωρία. Με την βοήθεια του τηλεσκοπίου ανακάλυψε τους τέσσερις δορυφόρους του Δία, παρατήρησε τις φάσεις της Αφροδίτης, τις ανωμαλίες στην επιφάνεια της σελήνης, καθώς και την ύπαρξη κηλίδων στην επιφάνεια του Ήλιου. Οι παρατηρήσεις αυτές αποδυνάμωσαν την αριστοτελική εικόνα του κόσμου, αφού τον οδηγούσαν στο συμπέρασμα ότι οι πλανήτες αποτελούνται από υλικό παρόμοιο με αυτό της Γης, και ότι υπήρχαν πλανήτες με δορυφόρους που γύριζαν γύρω από αυτούς και όχι γύρω από την Γη. Οι φάσεις της Αφροδίτης ήταν μια επιβεβαίωση των προβλέψεων του κοπερνίκειου συστήματος, σύμφωνα με το οποίο η Αφροδίτη γύριζε γύρω από τον Ήλιο και όλες της οι φάσεις θα έπρεπε να είναι ορατές. Ο Γαλιλαίος, με βάση αυτές τις παρατηρήσεις, συμπέρανε ότι η Γη είναι δυνατόν να κινείται στο χώρο (αφού άλλα σώματα με παρόμοια σύσταση το κάνουν) χωρίς, μάλιστα, να χάσει τον δορυφόρο της (αφού ούτε ο Δίας χάνει τους δικούς του).
Η μεγάλη συνεισφορά του Γαλιλαίου, πέρα από τις επιστημονικές ανακαλύψεις του, ήταν το ότι έδειξε σαφέστατα την χρησιμότητα και την επιτυχία της μαθηματικής προσέγγισης στη φύση. Ο Γαλιλαίος εισήγαγε την διάκριση μεταξύ πρωταρχικών και δευτερογενών ιδιοτήτων των φυσικών σωμάτων (αρχή που «δανείστηκε» από τους αρχαίους ατομικούς φιλοσόφους). Οι πρωταρχικές ιδιότητες (μέγεθος, σχήμα, κίνηση) μπορούν να ποσοτικοποιηθούν και να εκφραστούν μαθηματικά. Οι δευτερογενείς ιδιότητες ως ποιότητες (π.χ. ζεστό, κρύο) αφορούν στην αλληλεπίδραση του αντικειμένου με τον παρατηρητή, δεν αφορούν αποκλειστικά στο παρατηρούμενο αντικείμενο. Τα μαθηματικά μπορούν να μας βοηθήσουν να κατανοήσουμε τον κόσμο ακόμα και στις περιπτώσεις όπου (λόγω των προβλημάτων της ιδανίκευσης και της αφαίρεσης) δεν συμφωνούν εντελώς με την φυσική πραγματικότητα. Δεν μπορούμε να ξέρουμε εκ των προτέρων εάν μια συγκεκριμένη μαθηματική αλήθεια αντιστοιχεί στην φυσική πραγματικότητα, ή εάν μια συγκεκριμένη φυσική κατάσταση μπορεί να αναπαρασταθεί από μια συγκεκριμένη μαθηματική οντότητα (π.χ. από μια γεωμετρική γραμμή ή έναν αριθμό), αλλά μπορούμε να ισχυριστούμε – θεωρώντας το ως μεθοδολογική αρχή – ότι κάθε φυσική κατάσταση μπορεί να αναπαρασταθεί από μια μαθηματική οντότητα. Αυτό είναι το νόημα της περίφημης ρήσης του Γαλιλαίου ότι το βιβλίο της φύσης «είναι γραμμένο στη γλώσσα των μαθηματικών, και οι χαρακτήρες του είναι τρίγωνα, κύκλοι, και άλλα γεωμετρικά σχήματα, χωρίς τα οποία είναι ανθρωπίνως αδύνατο να καταλάβουμε έστω και μια λέξη από αυτό. χωρίς αυτά περιφέρεται κανείς σε έναν σκοτεινό λαβύρινθο» (Γαλιλαίος, Il saggiatore (Δοκιμαστής), 1632). Το ενδιαφέρον με αυτή την προσέγγιση είναι το ότι μπορεί κανείς να διαβάσει το βιβλίο της φύσης αφού πρώτα μάθει την γλώσσα, χωρίς να χρειάζεται να ασπασθεί κάποια συγκεκριμένη περιοριστική φιλοσοφία (όπως τον σχολαστικό αριστοτελισμό). Η θέση αυτή του Γαλιλαίου προκάλεσε έντονες συζητήσεις σχετικά με το γνωσιολογικό status των μαθηματικών, για το αν μπορούν τα μαθηματικά να παρέχουν έγκυρη και βέβαιη γνώση.
Ο Καρτέσιος (1596 – 1650) στο Λόγο περί της Μεθόδου (1637) εκφράζει την πεποίθησή του ότι η μαθηματική μέθοδος μπορεί να εφαρμοστεί «σε όλα τα πράγματα που βρίσκονται εντός της εμβέλειας της ανθρώπινης γνώσης». Τα μαθηματικά μπορούν να μας εξοπλίσουν με μια mathesis universalis (καθολική μάθηση) δίνοντάς μας το κλειδί για ένα ευρύ φάσμα ερευνών σε αντικείμενα όπως η αστρονομία, η μουσική, η οπτική και η μηχανική. Διακρίνει, όπως και ο Γαλιλαίος, μεταξύ πρωταρχικών (έκταση) και δευτερογενών ιδιοτήτων και πιστεύει ότι ο νους μας μπορεί να γνωρίσει την ουσία των πραγμάτων διεισδύοντας στην μαθηματική διάσταση της πραγματικότητας. Απέδειξε ότι τα ουσιώδη δομικά χαρακτηριστικά των γεωμετρικών σχημάτων μπορούν να εκφραστούν αριθμητικά και αλγεβρικά και θεμελίωσε την λεγόμενη «αναλυτική γεωμετρία» η οποία έδωσε τεράστια ώθηση στην «μαθηματικοποίηση της φύσης». Δρ. Διονύσης Μεντζενιώτης
ΒΙΒΛΙΟΓΡΑΦΙΑ
Αριστοτέλης, Αναλυτικά Ύστερα, Φυσικά και Μετά τα Φυσικά.
Biagioli, M., Ο Γαλιλαίος Αυλικός, Εκδόσεις Κάτοπτρο, Αθήνα, 2006.
Brown, G.I., «The Evolution of the Term “Mixed Mathematics”», Journal of the History of Ideas, τόμος 527, ν. 1, 19916, σσ. 81-102.
Burtt, E.A., The Metaphysical Foundations of Modern Physical Science, Doubleday Anchor, N.Y., 1954.
Buttnerr, J., Damerow, P., Schemmel, M., Valleriani, M., Galileo and the Shared Knowledge of His Time, Max-Planck Institute for the History of Science, Priprint 228, 2002.
Cohen, H. Floris, The Scientific Revolution: An Historiographical Enquiry, University of Chicago Press, Chicago, 1994.
Cottingham, J., Οι ορθολογιστές, Εκδόσεις Πολύτροπον, Αθήνα, 2003.
Dijksterhuis, E.J., The Mechanization of the World Picture, OUP, Oxford, 1969.
Finocchiaro, M.A., «Physical-Mathematical Reasoning: Galileo on the Extruding Power of Terrestrial Rotation», Synthese, τόμος 134, ν. 1-2, 2003, σσ. 217-244.
Gingerich, O., Voelkel, J.R., «Tycho and Kepler: solid myth versus subtle truth», Social Research, τόμος 72, ν. 1, Άνοιξη 2005, σσ. 77-106.
Koyré, A., Από τον κλειστό κόσμο στο Άπειρο Σύμπαν, Εκδόσεις Ευρύαλος, Αθήνα, 1989.
Koyré, A., Δυτικός πολιτισμός. Η άνθιση της επιστήμης και της τεχνικής, Εκδόσεις Ύψιλον, Αθήνα, 1991.
Kuhn, T.S., «Mathematical vs. Experimental Traditions in the Development of Physical Science», Journal of Interdisciplinary History, τόμος 7, ν. 1, 1976, σσ. 1-31.
Laird, W.R., «Robert Grosseteste on the subalternate sciences», Traditio, τόμος 43, 1987, σσ. 147-169.
Lindberg, D.C., «The Genesis of Kepler’s Theory of Light: Light Metaphysics from Plotinus to Kepler», Osiris, σειρά 2η, τόμος 2, 1986, σσ. 4-42.
Lindberg, D.C., Οι απαρχές της Δυτικής Επιστήμης, Πανεπιστημιακές Εκδόσεις Ε.Μ.Π., Αθήνα, 1997.
Shapin, S., Η Επιστημονική Επανάσταση, Εκδόσεις Κάτοπτρο, Αθήνα, 2003.